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Abstract 

Theoretical study of hypersonic boundary-layer receptivity to acoustic waves scattered by 

a wall waviness (distributed roughness) and hump (local roughness) is performed using a 

combination of asymptotic and numerical techniques. Analytical results have been 

obtained for the normal-wave excitation by any combination of external disturbances 

(sound, vortical and entropy waves) and wall perturbations (roughness, suction/blowing, 

temperature irregularities etc.). It is shown that a strong excitation occurs in local regions 

where the flow disturbance, which is due to nonlinear interaction of external waves with 

wall-induced disturbances, is in resonance with normal waves. Analytical results are 

integrated into the computational module predicting the normal-wave amplitude 

generated in the resonance regions. Calculations of the second-mode excitation by 

acoustic waves of different frequency and incidence angle were conducted for two- 

dimensional disturbances in the boundary layer on a flat plate at Mach 6. Receptivity 

functions are presented for the case of both distributed and local roughness. The 

theoretical model can be used to predict initial amplitudes of unstable normal waves as 

well as estimate a tolerable roughness size associated with transition. 
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Nomenclature 

Latin symbols 

A eigenfiinction vector (direct problem) 

% eigenfunction vector (conjugate problem) 

c phase speed 

F=(ove/u:2 
frequency parameter 

f streamwise component of mass-flux disturbance 

G receptivity function 

g roughness shape-function 

L streamwise scale 

M Mach number 

P=P'/(P:U?) pressure disturbance 

p = p* IP* =jM2p pressure disturbance 

q receptivity factor 

R=4uyivi Reynolds number 

t time 

T mean flow temperature 

U mean flow streamwise velocity 

V mean flow vertical velocity 

u,v,w velocity disturbance 

x,y,z 
*   /   T* x,=x IL =ex 

Cartesian coordinates 

slow variable 

Greek symbols 

cc,ß wavevector components in x- and z-direction respectively 

Y specific heats ratio 



e = S'/Ü small parameter 

A* boundary-layer thickness, U*(A*) = 0.99t/* 

S'=JV:L*/U: boundary layer scale 

V kinematic viscosity 

P(cc,ß) Fourier component of the shape-function g(x',z') 

60 angular frequency 

0 incidence angle 

e temperature disturbance 

¥ disturbance vector-function 

F(*,y) disturbance amplitude vector-function 

Subscripts 

0 resonance point 

a acoustic 

ad adiabatic wall 

b branch point 

dis distributed 

e upper boundary-layer edge 

Superscripts 

bar complex conju 

asterisk dimensional va 

Abbreviations 

Im imaginary part 

Re real part 
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1. Introduction 

This report summarizes the third phase of our theoretical studies on hypersonic boundary- 

layer receptivity. The first phase [1] addressed receptivity of two-dimensional boundary 

layer on a flat plate or sharp cone to entropy/vorticity disturbances. It was found that the 

first and second modes are synchronized with these freestream disturbances near lower 

neutral branch. Due to nonparallel effects entropy/vorticity waves are partially swallowed 

by the boundary layer and effectively generate the boundary-layer instability in the 

synchronism region. This mechanism can compete with the leading edge receptivity to 

acoustic disturbances [2, 3] in cases of "quiet" freestream and conical body 

configurations. 

In the second phase [4], we analyzed receptivity to wall-induced disturbances such as 

vibrations, periodic suction-blowing through holes and slots and wall-temperature 

perturbations. This receptivity mechanism is associated with active (ascend) flights of a 

hypersonic vehicle, when propulsion system generates skin vibrations. The latter can 

propagate upstream and excite boundary-layer instabilities on the forebody surface. 

Receptivity to wall-induced disturbances is also important in developing active 

techniques providing dynamic control of initial instability amplitude. In these techniques, 

wall actuators generate disturbances in counter-phase with "natural" unstable waves in 

order to cancel the existing instability. The theoretical analysis [4] showed that 

hypersonic boundary layer is extremely receptive to wall vibrations of resonance 

frequency and wavelength. It was found that the receptivity function is maximal near the 

lower neutral branch of the second mode. This maximum is associated with the 

disturbance spectrum branch point at which characteristics of the first and second modes 

are identical. Near this point, both excitation and propagation of unstable normal waves 

are singular. With the help of asymptotic analysis we resolved singularities and evaluated 

the receptivity function in the branch-point vicinity. This study showed that a 

straightforward extrapolation of the receptivity and stability procedures from moderate 

supersonic to hypersonic regimes may lead to wrong predictions. 
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Another important mechanism of hypersonic boundary-layer receptivity is relevant to the 

interaction of external unsteady disturbances (acoustic, entropy and vorticity waves) with 

steady disturbances induced by spatial variations in surface boundary conditions 

(roughness/waviness, local heating/cooling, suction/blowing etc.). Early experimental [5] 

and theoretical [6-8] studies of this mechanism have been conducted in Russia for 

subsonic flows. Their results have been summarized in [9]. Asymptotic theory of the 

Tollmien-Schlichting wave excitation by acoustic wave interacting with surface 

irregularities has been developed in [10-12] and reviewed in [12-14]. In the last decade, 

detailed parametrical studies of this receptivity mechanism have been represented in [15- 

18]. Theoretical predictions are in a good agreement with the experiment [19] conducted 

on a flat plate in low-speed wind tunnel. 

Receptivity of high-speed boundary layers (in the Mach number range from 1.15 to 4.5) 

to freestream disturbances scattering by the surface irregularities has been analyzed by 

Choudhari and Streett in [20]. They considered generation of inflectional and higher 

modes instability (the first and second modes) at Mach 4.5. Choudhari and Streett [20] 

reported that, although the Mach=4.5 boundary layer is nearly 6 times thicker than in the 

Mach=0 case, the instability amplitudes generated by a wall hump of fixed height are 

only marginally smaller than those at low speeds. This example indicates that receptivity 

of hypersonic boundary layer to acoustic plus roughness disturbances may play important 

role in the initial phase of transition. 

In this report, we perform theoretical analysis of hypersonic boundary-layer receptivity to 

acoustic waves scattered by surface waviness (distributed exciation) or hump (local 

excitation) on a flat plate. In Section 2, we formulate the problem and show that main 

features of its analysis are similar to the case of receptivity to wall disturbances 

considered in [4]. In Section 3, we discuss the numerical results obtained for the second- 

mode excitation by fast and slow acoustic waves of various incidence angles in the 

boundary layer at Mach 6. In Section 4, we conclude the report and discuss future effort. 
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2. Problem formulation and analysis 

In this chapter, we consider the excitation of boundary-layer normal waves by an 

acoustic wave which incidents on a flat plate and interacts with its wavy surface 

(distributed receptivity) or hump (local receptivity). In our analysis, we use the method 

developed in [4] for receptivity to wall-induced disturbances. 

2.1 Distributed receptivity on wavy surface 

We consider two-dimensional laminar boundary layer of a perfect gas on a hypersonic 

flat plate. The global streamwise length L* is assumed to be much larger that the 

boundary layer thickness scale 8* =i]v*eL*/U*e ; i.e. the ratio e = 8* /L* is small and the 

Reynolds number RL=^U*eLlv*e =£"' is large. The longitudinal x*, normal y\ 

transversal z* coordinates and time t* are made nondimensional using 8* and U* as 

(x,y,z) = (x\ y\z*)/8*,t = tV;/S*. 

Introducing the slow variable xl = x* IÜ = ex we can specify the nondimensional mean- 

flow velocity components (U, V), temperature T, and pressure P as 

U = U* /U; =U(x„y),V = V /U*e =eV0(Xl,y), T = T* /T; =T(Xl,y),       (2.1) 

PEP'/(PX>^). 

The wall waviness is represented in the form 

y w (x, y,z) = h exp(iccwx + ißwz) + (c.c), (2.2) 

where h = h* 18* is nondimensional amplitude, KW = (ccw,ßw) is wavenumber vector. It 

is assumed that the wavelength, XW=2KIKW= 0(1), is of the order of boundary layer 
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thickness A* (£/* =0.99U* at y* =A*). The waviness amplitude h* is smaller than the 

viscous sublayer thickness; i.e. h* < A*/?-1'2. In this case, the wavy wall generates small 

steady disturbances, which are governed by linearized Navier-Stokes equations [21]. 

An external acoustic wave of prescribed angular frequency co = a)*S* /U* and wave- 

numbers aa=aaU*el8*, ßa= ß*aU*e 18* incidents upon the plate as schematically 

shown in Fig. 1. Its physical quantities can be represented in a traveling-wave form. For 

example, the incident wave pressure is expressed as 

P = Paine exp(/aax + ißaz + ikaincy - iax) + (c.c). (2.3) 

The vertical wave-number component, kainc, is determined from the acoustic dispersion 

relation kainc = kainc(aa,0),M), where M  is freestream Mach number. The incident 

wave is refracted by the boundary layer, reflected by the wall and scattered by the wall 

waviness. Interacting with the waviness-induced disturbance the acoustic wave generates 

boundary-layer normal waves including the second mode. Our objective is to determine 

the receptivity function coupling characteristics of the incident acoustic wave and the 

wall waviness with the normal-wave amplitude. 

Using the approach of [4] we represent the unsteady flow field as the vector function 

*¥(x,y,t) = (u,— ,v,p,6, — ,w,—-Y, (2.4) 
dy ay       ay 

where u, v and w are velocity components; p = p* l{peUe~) is pressure and 0 is 

temperature. In the following analysis we will also use the nondimensional pressure 

p = p* IP* =yM2p. The vector-function (2.4) is expressed in the form 
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*V = Q(*i, y) + hFw (xl, y) exp(iawx + ißwz) + 

+ £aFa (*i. y) exp(iaa x + ißaz - icot) + F(x, y, z) exp(-ifl3r) + (c.c) (2.5) 

Here the first term describes the boundary-layer mean flow on smooth surface; the 

second term corresponds to the stationary disturbance induced by the wall waviness. The 

third term corresponds to the acoustic disturbance, which is a combination of incident 

and reflected waves plus viscous components (vorticity and entropy waves) associated 

with the interaction of the acoustic component with the boundary-layer flow. Definition 

of the amplitude ea depends on the acoustic wave normalization. Hereafter we normalize 

the vector-function Fa(y) by the condition: (pressure amplitude p of the incident 

acoustic wave)=l at the upper boundary-layer edge; then ea = p*ainc/P*. 

The fourth term in Eq. (2.5) represent disturbances generated in the boundary layer due 

to nonlinear interaction between the acoustic wave and the waviness-induced 

perturbation. It is assumed that disturbance amplitudes are small, ea «1 and h «1, 

and the higher order terms such as s;h, eah
2 are neglected; i.e. the nonlinear interaction 

is considered to be weak. 

Substituting (2.5) into Navier-Stokes equations we obtain the following problems, which 

can be written in the matrix-operator form. 

For stationary disturbances induced by wall waviness: 

H(y,dy,xl7co = 0,aw,ßw)Fw=0, (2.6a) 

rill 7YT 
Fwl(xi,0) = -—(xl,0), Fw,(xv0) = 0, Fw5(x1,0) = -—(xl,0), Fw7(oc1,0) = 0, (2.6b) 

Fw < °° > y -> °°. (2.6c) 
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Boundary conditions (2.6b) have been obtained by the Taylor series expansion of the no- 

slip conditions, u = v = w = 0, and the wall-temperature condition, 6 = Tw, at y = yw. In 

a similar way we can consider a wide class of inhomogeneous boundary conditions on 

the wall surface such as suction/blowing and heating/cooling. These variations do not 

affect the analysis. 

For acoustic disturbances: 

H(y,dy,xvO),aa,ßa)Fa=0, (2.7a) 

FfllUP0) = Fa3(x:,0) = Fa5(xx,0) = Fa7(x„0) = 0, (2.7b) 

(pressure amplitude of incident-wave component)=l, y —» °°. (2.7c) 

For boundary-layer disturbances: 

H(y,d y,xx,ed X[,z,d Z,(0)F = 

= h£aG(y,x1,Fw;ayaw,ßw,aa,ßa)Faexp[i(aw+aa)x + Kßw + ßa)z]A2-%a) 

Ffafi) = F3(*1,0) = F50cp0) = F7(xp0) = 0, (2.8b) 

<oo, y->oo. (2.8c) 

The right-hand side of Eq. (2.8a) describes nonlinear (quadratic) interaction of the wall- 

induced steady disturbance with the acoustic wave. 

In Eqs. (2.6a) and (2.7a), the operator H can be expressed in the standard form 

H=^--H0(y,x1;R,Q},a,ß), (2.9) 
dy 

where the matrix H0 has dimension 8 x 8. Its elements depend on the mean-flow profiles 

(2.1), disturbance parameters a, ß, 0) and Reynolds number R = iju*x* I v* . Explicit 

form of the matrix H0 is given in Appendix. 
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We consider a partial solution of the problem (2.8a)-(2.8c) as a decomposition of the 

discrete modes Fk{xvy) with eigenvalues ak(xvß,co) 

F = h£a^[Fk0(xl,y) + eFkl(xl,y) + -]exp(i£-lSk+ißz), 
k 

Sk = jak(x11a,ß)dxl. 

(2.10a) 

(2.10b) 

If the nonlinear term of Eq. (2.8a) is not in resonance with the normal waves; i.e. 

ak(xl,(ö,ßk)*aw + aa   and/or   ß*ßw + ßa,  then  the  normal-wave  excitation  is 

exponentially small and can be neglected. In this case, we obtain the standard eigenvalue 

problem 

f4~«. Fk0=0, 
[dy 

(F*o)i,3,5,7=Oaty = 0, 

to -> 0 at v -> oo. 

(2.10a) 

(2.10b) 

(2.10c) 

Its solution describes propagation of normal waves in the boundary layer far from 

resonance regions and can be expressed as 

F*o=c*(*i) A (*,,?,«,), (2.11) 

where  Ak  are eigenfunctions normalized by a certain condition. For example, the 

pressure disturbance amplitude is constant on the wall: Ak4(x1,0,ak) = 1 • The amplitude 

functions ck (JC, ) are unknown on this stage. 

If the nonlinear term is in resonance with one of the normal waves (say the wave with 

eigenvalue an) at some point *, = xl0, 
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an(*10,ö),ß) = aw + aamd ß = ßw + ßa, (2.12) 

then this normal wave is effectively generated by the acoustic wave due to relatively 

strong sound-waviness interaction near the resonance point xw. We consider the case 

when the normal wave is unstable and the resonance point is close to the lower neutral 

branch. Scheme of the resonant excitation region is shown in Fig. 2. Analysis of 

governing terms in Eq. (2.8a) indicates that the resonance excitation occurs in the 

relatively small region \xx -xl0\ = 0(£m), where we can introduce the inner variable 

% = e-U2(xl-x10) = O(l). (2.13) 

We assume that 

/? = A, + ft and ccw+aa =a0 +ysul, (2.14) 

where a0 =an(x10,co,ß), and the real parameter y characterizes resonance detuning. 

Now the inner solution of the problem (2.8a)-(2.8c) can be expressed in the form 

F = eM£~mc(OMy) + Ä^,y)...]^p(i£-y2a^ + ißz), (2.15) 

where A0(y) = An(x10,y,a0) is normal-wave eigenfunction at the resonance point. 

Expanding the operator HQ in the vicinity of x = x10 we obtain the following problem 

for the vector-function A\ 

(d     „ , ,Y;        .dc dHn , -       rdHn 

(dy 
A = -/^T~^f (xio'«o)A) + c% -^U10,a0)A, + GFa exp(/^), 

(2.16a) 

(A)i,3.5.7=0aty = 0, (2.16b) 
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4 ->>0 atj-»oo. (2.16c) 

This problem is similar to the problem (2.20) in [4]. It has non-trivial solution, if its right- 

hand side is orthogonal to the eigenfunction B0 = Bn(xl0,y,a0) of the conjugate 

problem. This condition leads to the following equation for the amplitude coefficient c(£) 

dc 
— -ib& = q exp(/>£), (2.17a) 
<% 

b = ^(xj, (2.17b) 
dx} 

q__. _<w.ft>  , (217c) 
<^o,^A(^io5aoH> da 

where the scalar product is defined as 

<B,Ä>=]fjBjAjdy, (2.18) 
o >=i 

the upper bar denotes complex conjugate values. Nonzero elements of the nonlinear 

interaction matrix G are represented in Apendix. If the normal wave has zero amplitude 

upstream from the resonance region, then the boundary condition for Eq. (2.17a) is 

specified as 

c(£)->Oat£->-oo. (2.19) 

Problem (2.17a)-(2.19) coincides with the problem (2.21a)-(2.22) of [4], if we replace the 

numerator (i?0,Ö0) in Eq. (2.21c) by the scalar product <B0,G(xw)Fa >. Using this 

similarity we obtain the normal-wave amplitude downstream from the resonance region 
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F. = sM-]l2 
n       " a 

2m 

y2bj 
Ä(x],y)exp is~x \a„(xl)dxl for x, >x. (2.20) 

This equation shows that the normal-wave amplitude is proportional to (JC IS*)m = R"2, 

whereas the resonant region length is /* = R][2S*. As the Reynolds number increases, 

nonparallel effects (which disturb the resonance condition) decrease and the relative length 

VIS* increases. In the parallel mean-flow limit,RL -»oo, the resonance region is 

infinitely large and the normal wave amplitude tends to infinity. In this case, the upper 

limit of the disturbance amplitude is determined by nonlinear effects of the higher order 

approximation. These conclusions are similar to those formulated in [4] for receptivity to 

wall disturbances. 

Note that nonparallel effects make the receptivity mechanism to be local in units of L* 

even for distributed roughness. However it can be treated as a distributed mechanism in 

units of 8*. Our choice of the term "distributed receptivity" is a matter of convention. 

2.2 Local receptivity on hump 

We consider a spanwise row of local humps on a flat plate surface. For brevity we analyze 

one spanwise harmonic of this periodic structure, and specify its shape as 

y*(*,y>z) = Ä^')exp(/^) + (c.c), x' = x-x0= e~\xx -x10).       (2.21) 

The shape-function is represented by the Fourier integral 

g(x') = — \ P(«J exp(/awx ')dccK (2.22) 

which can be expressed in the form 
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1 +00 

^ = 7-^,/2exp(/aw0x')Jyo(aK,0 + su 2y) exp(iy^)dy. (2.23) 

Here aw0 =an(xw,co,ß)-aa is wavenumber component fitting to the resonance 

condition (2.12), and y characterizes resonance detuning in accordance with Eq. (2.14). 

Using the relation (2.20) for the normal-wave amplitude excited by one harmonic and 

integrating over y we obtain 

Fn = £fl%>(«wo K (*', y) exp 
Cx' \ 
iia^x^dx' + ißz 

V o J 
{2.2A) 

This expression is similar to Eq. (2.33) of [4] for a local wall forcing. Important that the 

function q(xxo,a0,aa,ßa) does not depend on the hump shape g(x'). If this function is 

calculated once and for all, then we can evaluate the normal wave amplitude generated by 

the sound wave interacting with a wall hump of arbitrary shape (within the limit of our 

assumptions). 

The acoustic wave interacting with a local hump generates the boundary-layer normal 

wave of a finite amplitude even in the parallel mean flow. This is due to the fact that only a 

small portion of the hump spectrum, (aw -aw0) = 0(eV2), is involved into the resonance 

mechanism. As s -> 0, the resonant excitation increases proportionally to s~m, whereas 

the active spectrum region is narrowed down proportionally to sm. Because both trends 

compensate each other, the normal-wave amplitude tends to a finite value. 

Note that Eqs. (2.20) and (2.24) hold for any combinations of freestream disturbances and 

wall perturbations. For example, if we replace the acoustic wave by vortical (entropy) 

wave, then these expressions provide the normal wave amplitude generated by vortical 

(entropy) wave interacting with a surface irregularity. The normal wave can also be of 
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different nature such as Tollmien-Schlichting wave, second mode, cross-flow vortices, 

Görtier vortices etc. All these cases can be treated using the same computational module, 

which 

1. solves Problem (2.6a)-(2.6c) for wall-induced disturbance; 

2. solves Problem (2.7a)-(2.7c) for external (freestream) disturbance; 

3. solves the eigenvalue problem (2.10a)-(2.10c) and its conjugate problem to obtain the 

normal-wave eigenfunctions An{x^,y) and Bn{x^,y); 

4. evaluates the scalar products of Eqs. (2.17c); 

5. predicts the normal-wave amplitude using Eq. (2.20) for distributed receptivity or Eq. 

(2.24) for local receptivity. 

Such a module was developed and coupled with our stability solver. 

2.3 Receptivity near spectrum branch points 

Foregoing analysis is valid for "simple" discrete spectrums; i.e. eigenvalues of the 

boundary-layer modes are assumed to be different. This is typical for subsonic and 

moderate supersonic boundary layers as well as hypersonic boundary layers on adiabatic 

walls. The analysis of [1, 2, 4] showed that the first and second modes have branch points 

which are close to the real parameter space in the case of low wall temperature ratios. The 

upstream branch point, xx - xlb, is located near the lower neutral branch of the second 

mode whereas the downstream branch point is close to the upper neutral branch. In the 

branch-point vicinity (say for the upstream point xlb), the eigenvalues behave as 

«i,2 =ab±iÄ^jxl-xlb +..., (2.25) 

where ccb = a,{xlb,m) = a2(x,b,a>). 
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The following analysis is focused on the upstream branch point. The receptivity factor q 

in Eq. (2.17c) tends to infinity as the resonance point tends to the branch point, 

*io ""* x\b • Tnis singularity is due to the fact that the scalar product 

-^ (xw, a0)\, B0 \ -> 0, as x10 -* xhl. (2.26) 

The eigenvalue derivative, which is involved into Eq. (2.20) for distributed receptivity, 

behaves as 

~dt(*10} ^ °°' aS ^10 ^ Xbl' (2'27) 

This singularity has been studied in [4] for the case of receptivity to wall-induced 

perturbations. Since the analysis of [4] is easily extended to the problem considered in 

this report, we will briefly indicate key points of this extension and summarize the 

results. For brevity, we consider two-dimensional normal waves with ß = 0. 

Near the branch point, Mode 1 (with the eigenvalue a^x^to)) strongly interacts with 

Mode 2 (with the eigenvalue a2(*,,©)) due to nonparallel effects. This interaction can 

be described by the two-mode approximation; i.e. the disturbance amplitude from Eq. 

(2.5) is expressed in the form 

F(x, ,y) = cl (*,) \ (xl, y) exp(e_1/51) + c2 (x1 )A2 (^, y) exp(£_1/52).    (2.28) 

Far from the resonance regions, the amplitude coefficients C12(JC,) are solutions of the 

ODE problem 

dc 
-£ = c,Wn + c2W12 exp[£~li(S2 - 5,)], (2.29a) 
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Hr 
=2. = c,W„ + ClWn expfe-'iXS, - 5,)], (2,29b) 
dxx      '   " ' 

c, (*„) = cu, c2 (xls) = c2s, (2.29c) 

where cu and c2j are prescribed values at a certain initial point xls; the matrix elements 

are defined as 

-   9//03At\    . /-       9A, 

i  7' 9a 9x, /    \ r   l dx, 
Wik=-^ —  "'/ \ LL, j = l,2,k=l,2; (2.30) 

p da dxx 

where the matrix Hl is relevant to nonparallel effects. Its elements depend on the mean- 

flow profile derivatives dU I dx{, dT I dx: and vertical velocity V0. Near the branch point, 

the matrix elements (2.30) behave as 

(-1)**-1 

^i^T™' (Z31) 

That leads to the following singularity of the amplitude coefficients 

vl/4 
cu(*i)=      J1,2 V/4

+---'as xi -*xib> (2-32) 
\Xl      X\b> 

where constants C12 depend on the normalization of eigenfunctions Ä\i2(jc1,;y). 

In the region x{ -xlb =0(e2n), the mode decomposition (2.28) is replaced by the local 

expansion with the inner variable £ = e~2n(x1 -xlb) 
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F = s-1/6[c0(C)A0(y) + s-mcm(OA0l(y) + ...]cxp(i£-lSb+ie-U3abC) •   (2.33) 

Here c0(£) is solution of Airy equation 

d2c, 

d£ 
f-A2Cc0=0. (2.34) 

Matching the inner and outer solutions we can establish an exchange rule in the branch- 

point vicinity [2, 4]. The local expansion (2.33) indicates that the disturbance amplitude 

has a peak in the branch-point influence domain £ = 0(1), with maximum amplitude 

being of the order of e~m. To separate this effect from the receptivity mechanism we 

need to establish a relationship between the constants Cw (instead of the amplitude 

functions c12) and characteristics of incident acoustic wave plus wall disturbance. 

Wavy wall 

If the incident acoustic wave interacts with the wall waviness, then the unstable normal- 

wave amplitude is expressed as 

Fn=£ah£ 
.„a       yJ7d <B0,G(xw)Fa > 

IE 
1 jan(xl)dxl 
xw 

, (2.35) 

xi     -*io • 

Whereas the local amplitude coefficient of the unstable mode n is 

as xl0 —> xlb. (2.36) 
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Equation (2.36) shows that distributed receptivity has no singularity at the spectrum 

branch point. In accordance with Eq. (2.32), the disturbance peak is totally due to a 

singular behavior of the unstable mode itself. If one measures the disturbance amplitude 

Qn at a certain fixed point downstream from the branch point for various locations of the 

resonant point xw, then he will not observe significant changes in the distribution 

Qn(xi0) near the point x10 = xlb. This conclusion is similar to that formulated in [4] for 

receptivity to wall-induced disturbances. 

Local hump 

If the hump is far from the branch point, then the normal-wave amplitude is determined 

from Eq. (2.24). As the hump approaches the branch point, the receptivity factor behaves 

as 

^<4;OW>( JgW io^%, (2.37) 

#0,—     (*io>ao)A) / 
L ÖX, I 

Then the amplitude coefficient from Eq. (2.32) is expressed in the branch point vicinity in 

the form 

<B0,G(xl0)Fa> Xp(a0) 

l^J^ix^a^y^-^ 

Local receptivity increases proportionally to (xw-xlb) 
1/4 as the hump approaches the 

branch point. This effect is due to the increase of the active wavenumber range of the 

hump spectrum. If the hump is far from the branch point, then this range is estimated as 

(aw+aa -a0) = O(s1/2). If the hump is placed in the region (xl0-xlb) = O(e2n), then 

the active wavenumber range becomes of the order of (aw +aa-cc0) = 0(sm). In this 

case, the amplitude coefficient is estimated as Cn = 0(eahe~U6). 
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Analysis of the inner solution (2.33) and its matching with the outer solution lead to the 

following expression for the normal wave amplitude 

F. =e„he -1/6 ipK)r(l/3) (AT<B,G(xlb)Fa>: ' * 
s   otin - 2^{x,-xlb)

m 
v3y 

\  *' Ac,    *J 

•»1 

(2.39) 

where e2/3 «x, -x14 «1; subscript "b" denotes quantities evaluated at xi=xV)\ 

Gamma-function T(l/3) = 2.678938.... From this expression and Eq. (2.32) we obtain 

the amplitude coefficient 

Cn=eah 
I T Ap(«jr(l/3) < Bb,G(xlb)Fa > 

K3£j l4n 
B   *^Ä 

\       ax, 

(2.40) 

Summarizing we conclude that local receptivity strongly depends on the distance 

between the hump and branch point. As   x10 -» xlb, the amplitude coefficient  Cn 

increases proportionally to |*10-xJ"1M and attains its maximum value of the order of 

eahe~u6 at the branch point xl0 =xlb.lf one measures the disturbance amplitude Qn at a 

certain fixed point downstream from the branch point for various hump locations, then he 

will observe a local peak in the distribution Qn(x10) near the point x10 = xlb. Because the 

branch point is close to the lower neutral branch, this peak will be enhanced by the 

exponential growth of unstable disturbance. This result is consistent with that obtained in 

[4] for receptivity to wall-induced disturbances. 
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3. Numerical results 

Receptivity calculations were conducted for the boundary layer on a flat plate at local 

Mach number  M = 6, stagnation temperature  ro* = 390°  F, and wall temperature 

T* = 80° F that corresponds to the wall temperature ratio T*/T^ =0.6356. Dr. Roger 

Kimmel indicated this case as a good candidate for the Mach 6 wind tunnel experiment. 

It is assumed that the fluid is a perfect gas with a constant specific heats ratio y = 1.4 

and Prandtl number Pr = 0.72. The viscosity-temperature dependency is approximated 

by Sutherland's law 

_(l + 5)_r3/2 (31) 

(T + S) 

where 5 = 110/7/ for air temperature measured in degrees Kelvin; ß = ß* I \ie is 

nondimensional viscosity. Hereafter the global length scale is L* = x*, the local scale is 

self-similar boundary-layer scale 6* =,Jv*x*/U*, the Reynolds number is RL=R = 

Ju]x*lv\ and £ =5*/L*=Rl. 

3.1 Mean flow 

We neglect effects of hypersonic viscous-inviscid interaction and assume that flow 

characteristics at the upper boundary-layer edge coincide with the freestream 

characteristics. The laminar boundary-layer flow is approximated by the self-similar 

profiles U(y) and T(y), with the boundary-layer variable y = y*/-yJv*ex*/U*e . These 

profiles and their first derivatives are shown in Figs. 3 and 4. In this case, the boundary- 

layer thickness is A* =16.73^/veV IU*e   (here C/*(A*) = 0.99i/e*), and the displacement 

thickness A*d = 13.64-y/v*** /U* . Figure 4 shows that the wall temperature is slightly 

below the adiabatic-wall temperature. 
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3.2 Second mode 

Characteristics of two-dimensional normal waves have been calculated for the second- 

viscosity coefficient A: = 1.2 (k = 0corresponds to Stokes). In Figs. 5 and 6, the 

eigenvalue   distributions    a2(R)    are   shown   for   various   frequency   parameters 

F = co*v*/£/*"• Figures 7 and 8 illustrate the phase-speed distributions c,(/?) = 

Re(co/a2) and the branch-point locations respectively. The second-mode phase speed is 

smaller than the freestream speed and larger than the phase speed ca = 1 - MM of the 

upper limit for slow acoustic waves. Local maximums (minimums) of c2(v) correlate 

with the upstream (downstream) branch point loci. Note that the branch points are close 

to neutral branches of the second mode. In accordance with the analysis [1, 2], this 

spectrum topology is typical for hypersonic boundary layers. 

Figure 8 shows that the upstream branch points are below the real axis of complex R, 

and the downstream branch points are above this axis. In what follows, we assume that 

the branch-point influence domains are far enough from the real axis and use the 

theoretical model of Section 2 relevant to a simple discrete spectrum. 

Distributions of the pressure amplitude, p2(y) = yM2\A24(y)\, and streamwise mass-flux 

amplitude, 

My) = ^21 + ]M%4-^1 p (3-2) 

are shown in Fig. 9 for the point F = 8. x 10"5, R = 1000 located near the lower neutral 

branch. The eigenfunction is normalized as p,(0) = l. The streamwise mass-flux 

amplitude has a typical sharp maximum in the critical layer, where the disturbance phase 

speed is close to the mean-flow velocity. 
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3.3 Waviness-induced perturbations 

The pressure contours Re[pw(y,ccw)] = '}M2 Re[Fw4(y,ocw)] = const are shown in Fig. 

10 for the Reynolds number /? = 1000. It is seen that the wavy wall generates steady 

Mach waves outside the boundary layer. Disturbances of maximum amplitude are 

observed at ccw =0.75. In the long-wave (ocw —»0) and sort-wave (ccw —»«>) limits, 

pressure amplitude vanishes. A major portion of the boundary layer is weakly perturbed. 

The first maximum of pressure fluctuations is located near the upper boundary-layer 

edge, where the second-mode critical layer is normally observed. Distributions of 

Re[pw(y)] are shown in Fig. 11 for aw = 0.001, 0.05 and 0.1. It is seen that the pressure 

disturbance amplifies passing through the laminar boundary layer. Their amplitude in 

external inviscid flow is essentially higher than that within the boundary layer. 

Contours of the streamwise mass flux component, 

Re[/w(y,a)] = Re Fwl + 
( F 

yM2Fw4-^ — = const, (3.3) 

are shown in Fig. 12 for the Reynolds number /? = 1000. This pattern is qualitatively 

similar to the pressure pattern in Fig. 10 besides a sharp peak (dark blue region) at small 

wavenumbers. This peak is close to the upper boundary-layer edge. 

Distributions Re[/W(y,a)] at the wavenumbers a = 0.001, 0.05 and 0.1 are shown in 

Fig. 13. Similar to the case of pressure disturbances, the mass-flux amplitude outside the 

boundary layer is essentially higher than that observed within the boundary layer. 

Contours of the static pressure amplitude, |jPw(y,a)| = const, and the streamwise mass- 

flux amplitude, |/w(y,a)| = const, are represented in Fig. 14 and 15 respectively. These 

data give another illustration of mentioned above features of the waviness-induced 
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disturbance. In addition, it is seen that both distributions have a flat maximum near 

a = 0.075. 

3.4 Acoustic waves 

Schematic pattern of acoustic waves generated by a cylindrical source in supersonic flow 

is shown in Fig. 16. The incident wave front is tangent to the flat surface at Point B. Near 

this point, acoustic waves propagate upstream and downstream with very high phase 

velocity and have the incidence angle 0 = 90°. In Region AB, the phase speed of 

upstream front rapidly increases from - °o (at Point B) to 0 (at Point A, where the Mach 

wave crosses the plate surface). In this relatively short region, acoustic waves propagate 

upstream. At the turning point A, wave fronts stagnate and form an oscillating Mach 

wave. Then they turn back and move downsteam as slow acoustic waves with the phase 

speed 0<ca<l-l/M. The downstream fronts propagate with the phase speed 

decreasing from + °° (at Point B) to ca =1 + 1/M (in far-downstream region). These 

fronts form fast acoustic waves. 

To identify incident and reflected waves we consider the acoustic dispersion relation in 

the inviscid approximation. The pressure disturbance can be expressed as 

Pa(*, y) = P+ exp(iaax + ikay - icot) + p_ exp(iaax - ikay - loot), (3.4) 

where 

ka = ^M2(aa-o))2-a; , Re(ka) > 0. (3.5) 

Analysis of the acoustic-front kinematics shows that 

• for counter-flow waves (propagating upstream in Region AB) and fast waves, p_ 

corresponds to incident wave and p+ to reflected wave; 

• for slow waves, p+ corresponds to incident wave and p_ to reflected wave. 
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This switch from one component to another is due to supersonic convection of acoustic 

fronts as schematically shown in Fig. 16. It is convenient to express the acoustic 

wavenumber as a function of the incidence angle 0. From the dispersion relation (3.5) 

we obtain: 

For slow waves 

coMcos© CO     . 1 .    ._    ^ ._ ,. 
aa = ,ca= — = 1 , O<0<0cr, (3.6) a    Mcos0-f   a    cr Mcos0 

where 0cr = arccos(l/M) corresponds to the Mach wave incident angle. 

For fast waves 

coM cos 0 . 1 .    n aa= , ca=\ + , O<0<7T/2. (3.7) 
M cos 0 + 1 M cos 0 

For counter-flow waves 

coM cos 0 . 1 _       _ 
aa= , ca-\ , 0cr<0<^/2. (3.8) 

M cos 0-1 M cos 0 

In all figures, presented hereafter, the acoustic wave incidence angle 0 is measured in 

degrees. 

At hypersonic speeds, Region AB with counter-flow waves is very short and can be 

treated as a local region concentrated near the line of intersection between the Mach 

wave and the body surface. In this report, we do not consider receptivity to disturbances 

of this type. We will focus on the case when the plate is inside the Mach cone and its 

surface is radiated by slow and/or fast acoustic waves. 
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A good guidance to the interaction of acoustic waves with a hypersonic boundary layer is 

provided by the short-wave (WKB) analysis [22, 23]. Schematic picture of this 

interaction is shown in Fig. 17 for slow waves with the phase speed a(Q) <ca<Ue-ae, 

where a(y) is local sound speed. In the lower wave-guide, acoustic rays are reflected by 

the wall and refracted near the lower sonic line, U(y) = ca-a(y). In the upper half- 

space, incident acoustic waves are refracted near the upper sonic line, U(y) = ca+a(y). 

In the quiet zone between these two lines, the disturbance amplitude decays 

exponentially with the distance from the sonic lines. These qualitative features of the 

acoustic field-boundary layer interaction are used in the following discussion of 

numerical data. 

Slow waves 

Calculations have been performed for slow acoustic waves with the dispersion relation 

(3.6) at frequency F = 8.xl0"5 and Reynolds number R = 1000. The critical incidence 

angle is 0cr =80.4° at the Mäch number M=6. Figure 18 shows contours of the 

pressure amplitude,  \pa(y,®)\ = const. Figure 19 represents the function  \pa(y)\  at 

various incident angles. Pressure waves weakly penetrate into the boundary layer because 

its major portion is covered by the quiet zone (see Fig. 17). Due to interference between 

reflected and incident waves, pressure amplitude oscillates from 0 to approximately 2 

outside the boundary layer; i.e. the reflection coefficient is close to one and the boundary 

layer is passive with respect to pressure waves. A flat local maximum of the pressure 

amplitude is observed in the boundary layer at the incident angle 0 ~ 40°. As 0 -> 0cr, 

the disturbance wavelength decreases, the phase speed ca —»0, and the upper sonic line 

moves toward the wall allowing pressure waves penetrates deeper into the boundary 

layer. 

The streamwise mass-flux contours |/a(y,0)| = const and the functions |/a(y)| are 

shown in Figs. 20 and 21 for various incidence angles. As contrasted to the pressure 

wave, the mass-flux disturbance has a peak near the upper boundary-layer edge. Its 
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maximum corresponds to the incident angle 0 = 40°. Important that this peak overlaps 

with the second-mode peak in the critical-layer (see Fig. 9). Such an overlapping can 

increase the scalar product < G(xl0).Fa,B0 > and enhance receptivity. 

Figure 22 shows contours of the maximum streamwise mass-flux, max|/a(y)|, in the 
y 

frequency-Reynolds number plane. It is seen that the mass-flux amplitude monotonically 

decreases with R and F. 

Fast waves 

Characteristics of fast acoustic waves were calculated at the same frequency 

F = 8. x 10-5 and Reynolds number R = 1000. The pressure amplitude distributions are 

shown in Figs. 23 and 24. Fast waves have no sonic lines and quiet zone because their 

phase speed is ca>Ue+a. Acoustic rays can easily penetrate into the boundary layer 

that changes the pressure amplitude pattern (compare Figs. 18 and 23). Because of this, 

the maximum of |jpa(y)| is observed near the wall. Its extremum corresponds to the 

incident angle 0 = 50°. 

The streamwise mass-flux contours, \fa(y,Q)\ = const, and the functions, |/a(y)|, are 

shown in Figs. 25 and 26 at various incidence angles. The mass-flux amplitude has a 

peak near the upper boundary-layer edge. It is higher and sharper than in the slow-wave 

case (see Figs. 20 and 21). Figure 27 shows the contours of max|/a(y)| in the frequency- 

Reynolds number plane. Similar to the case of slow waves (see Fig. 22), the streamwise 

mass-flux amplitude of fast waves monotonically decreases with R and F . 

Foregoing numerical examples indicate that hypersonic boundary layer is more sensitive 

to fast acoustic waves than to slow ones. That is consistent with the acoustic field 

topology predicted by the short-wave theory (Fig. 17). However the slow-wave phase 

speed is closer to the second-mode phase speed that is more preferable for receptivity. 
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The last argument is important for receptivity on smooth surfaces such as the leading- 

edge receptivity. However, it is not critical for receptivity to sound plus wall roughness, 

because the roughness shape can be always tuned to meet the synchronism condition 

(2.12). 

Small incidence angles 

Figures 18, 20 (for slow waves) and Figures 23, 25 (for fast waves) show that the 

disturbance amplitude decreases rapidly as the incidence angle tends to zero (phase 

speed ca -»1 ± 1 / M). This is due to the fact that the reflected acoustic wave is almost in 

counter-phase with the incident wave and they cancel each other in the boundary layer. 

The limit 0->O needs to be analyzed carefully because the length scale of the 

amplitude variation in vertical direction tends to infinity, I* = {2KIka)S* -»<~. 

According to the analysis of [2] nonparallel effects can change the acoustic field 

essentially if the length ratio is l*y / A*d = 0(AdF
vl) (Ad =A*d/^v*x'/U*e is 

nondimensional displacement thickness, which is Ad ~ 14 in the case considered). 

Using Eqs. (3.5), (3.6) we obtain that the local-parallel approximation is not valid, if the 

incident angle 0<0(AF1/2). For the frequency parameter F = 8.xl0~5, this gives the 

restriction 0<7°. 

The asymptotic analysis [2] indicates that the boundary layer growth (nonparallel effect) 

causes diffraction of incident acoustic waves. As a result, acoustic field amplitude at the 

upper boundary-layer edge decreases in downstream direction. The boundary-layer 

displacement leads to formation of "quiet" zone near the plate surface and far from the 

leading edge. 

For configuration shown in Fig. 16, a major portion of the plate surface is radiated by 

acoustic waves of small incidence angle. This is typical for acoustic sources to be at rest. 

Both the diffraction and the counter-phase interference can essentially reduce the sound 

amplitude in the boundary layer. This, in turn, reduces the normal-wave excitation due to 
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sound scattering by a roughness element located far downstream from the leading edge. 

However, in many practical cases, sound waves are generated by sources converted 

downstream. Their incidence angles are normally large. For example, the measurements 

of Laufer [24] indicated that a turbulent boundary layer on walls of a conventional wind 

tunnel radiates sound with the incidence angle larger than 45°. These arguments indicate 

that receptivity experiments should cover a wide range of the acoustic-wave incidence 

angle. Special techniques need to be developed to simulate sound from convective 

acoustic sources. 

3.5 Distributed receptivity on wavy surface 

Using Eq. (2.20) we express the initial amplitude of the second-mode wave generated by 

wavy wall in the resonance region as 

\p2(xlo,0)\ = £ah£-y2Gp4is(xl0,(ü,aa), (3.9) 

where |/?,(;c10,0)| is pressure amplitude on the wall surface; the receptivity function is 

expressed in the form 

r      - c~xn- Vhü 
'VT qJ-ryM2A24(x10,0) (3.10) 

.      <BG(Xl0)Fa>        bs^    y (3.n) 

°'"där(*io'aoMo> 

The acoustic-wave vector-function,   Fa, is normalized by the condition (pressure 

amplitude of the incident wave at the upper boundary-layer edge)=l; i.e. ea = p*mcl' P* at 

y = ye. The waviness amplitude is measured in units of the local scale 5* = yv'xg IU*e , 

where   x*0   is  resonance-point coordinate;  i.e.   h = h* Iyjv*ex*01U*e .  The receptivity 
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function Gpdis is considered as a function of frequency parameter F, Reynolds number 

R = TJU*XI/V* and acoustic-wave incidence angle 0. 

Because |lm(a2)|«|Re(a,)| for all parameters under consideration, we use the 

following approximation of the resonance condition (2.12) 

<xw=cc2(xw,(D)-aa=Re[a2(x10,CQ)-cca]. (3.12) 

Calculations of the distributed receptivity function Gp dis were performed for slow and 

fast acoustic waves of frequencies F = 4.xlO"5,6.xlO"5,8.xlO"5 and 10"4 in the 

Reynolds number ranges relevant to the second-mode instability (see Figs. 5 and 6). 

For slow acoustic waves, the wavenumber aa is expressed by Eq. (3.6) as a function of 

the incident angle 0. Figures 28a-31a show the receptivity function G dis(Q,R). 

Figures 28b-31b represent the contours G pdis{Q,R) = const. In all cases, the receptivity 

function is highly non-uniform with respect to the Reynolds number. It has two sharp 

maximums: the first is observed near the lower neutral branch and the second near the 

upper neutral branch. Similar to the case of wall-induced disturbances [4], these 

maximums correlate with the discrete-spectrum branch points shown in Fig. 8. 

The first maximum is of the most interest to the transition prediction methodology 

because it corresponds to the initial phase of instability amplification. The contour plots 

indicate that this maximum is observed at relatively high incidence angles, 0 « 65", for 

all frequencies considered. The second maximum may be of a particular interest to 

bypass modeling. It is slightly larger than the first maximum and observed at smaller 

incidence angles 0 = 40°. Receptivity to acoustic waves of small 0 is on the order of 

magnitude lower than its maximum value. This is consistent with the fact that such 

acoustic waves do not penetrate into the boundary layer due to the counter-phase 

interference between incident and reflected waves (see Section 3.4). 
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For fast acoustic waves, the wavenumber aa is specified by Eq. (3.7). Figures 32a-35a 

show the receptivity function Gpdis(Q,R), and Figures 32b-35b illustrate the contours 

Gpdjs(Q,R) = const. Receptivity to fast acoustic waves is higher than to slow ones. This 

is consistent with the fact that the fast-wave amplitude is larger than the correspondent 

slow-wave amplitude (see Section 3.4). The first and second maximums of the 

receptivity function merge into one maximum as the frequency increases. For 

F >6.xl0~5, they form a relatively flat peak covering the unstable Reynolds number 

range. The receptivity function maximum is observed at the incidence angle 0 = 45°. 

This maximum is a weak function of the disturbance frequency. As the incidence angle 

tends to zero, the receptivity function decreases rapidly. 

3.6 Local receptivity on hump 

Using Eq, (2.24) we can express the second-mode amplitude generated by acoustic 

waves on a local hump as 

\p2(xw,0)\ = £ahGphc(xl0,o),aa)\p(aw0)\. (3.13) 

Here the local receptivity function is 

G,,toc=|<7^244(*10,0)|, (3.14) 

the Fourier component p(ocw) is determined as 

+°° 

P(aw)= \g{x')exv(-iawx')dx', (3.15) 
—oo 

the function q is given by Eq. (3.11). The resonance wavenumber ccw0 is approximated 

by Eq. (3.12). Similar to the case of receptivity on a wavy wall, Gploc is considered as a 
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function of the frequency parameter F, Reynolds number R = Ju*exllv*e based on the 

hump center x*0, and the acoustic-wave incidence angle 0. 

The receptivity functions Gphc(B,R) and their contours GpM(Q,R) = const are shown 

in Figs. 36-39 for slow acoustic waves and in Figs. 40-43 for fast acoustic waves. 

Comparing these data with the distributed receptivity data shown in Figs. 28-35 we 

conclude that the local receptivity function is much lower than the distributed one, 

G
P.IOC * l0~2Gp,dis ■ However, qualitative behavior of Gploc is similar to that observed for 

the distributed receptivity. This is due to the fact that the ratio, 

P.^   _ p~1/2 

P,loc 

2m 
\da2ldxx)Xx=x 

(3.16) 

does not depend on characteristics of acoustic wave and roughness. In the cases 

considered, the eigenvalue derivative da2/dx1 is a regular function of x1 because the 

spectrum branch points are shifted to the complex R -plane as shown in Fig. 8. For this 

reason, the ratio (3.16) is a relatively weak function of the streamwise coordinate xl0 or, 

what is the same, the Reynolds number R. 

Note that in the case of hypersonic boundary layer on a cooled plate [1, 4], the branch 

points may be close to the real axis. Since the eigenvalue derivative tends to ± °° in the 

branch-point vicinity (see Eq. (2.25)), the local behavior of the functions Gpdis and 

G
PM 

wil1 De different. In this case, we should use the receptivity model of Section 2.3. 
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4. Summary discussion 

In this study, we extended the receptivity model developed in [4] for wall-induced 

perturbations to the case of freestream disturbances scattered by surface roughness. We 

considered the second-mode excitation by acoustic waves interacting with the wall 

waviness (distributed roughness) and hump (local roughness element). This problem 

includes the following components: 

(a) stationary disturbances generated by surface roughness; 

(b) acoustic disturbance resulted from the interaction of incident acoustic wave with the 

boundary-layer mean flow and wall; 

(c) unsteady perturbation resulted from the nonlinear interaction of the roughness-induced 

disturbance with the acoustic wave. 

As contrasted to the subsonic case, a 2-D acoustic source in supersonic flow generates 

slow waves with the phase speed 0<ca < 1 -\IM, fast waves with ca > 1 + \IM and 

counter-flow waves with ca < 0. The latter stagnate near the Mach line and form a local 

disturbance with zero phase speed. In this report, we analyzed receptivity to slow and fast 

acoustic waves only. 

It is shown that the receptivity mechanism depends on the discrete spectrum topology. If 

the spectrum is simple {i.e. its branch points are essentially complex and their influence 

domains do not overlap with the real parameter space), then the receptivity mechanism 

reveals the following features: 

• For distributed roughness, a strong excitation occurs in a local region of the length 

/* =i?_1/2Z* = RV2S*, where Component (c) is in resonance with the second-mode 

wave. In this region, the normal-wave amplitude is proportional to {Ü IS*)1'2 = R1'2. 

As the Reynolds number increases, the relative length of the resonance region, l* IS*, 
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increases. As R -» oo, the normal wave amplitude tends to infinity. In this case, the 

upper limit of the disturbance amplitude is determined by nonlinear effects of the 

higher-order approximation. 

• For local roughness, the normal-wave amplitude is finite even in the parallel flow limit. 

This is due to the fact that only a small portion of the roughness spectrum, 

(aw-aw0) = O(R~U2), is involved into the resonance mechanism. As .ft-»oo, the 

resonant excitation increases proportionally to Rm, whereas the active spectrum 

region is narrowed down proportionally to R~U2. Because both trends compensate 

each other, the normal-wave amplitude tends to a finite value. 

If the branch-point influence domain overlaps with the real parameter space, then both 

propagation and excitation of normal waves are singular. The receptivity function tends to 

infinity as the resonance point approaches the spectrum branch point. Asymptotic analysis 

of this singularity leads us to the following conclusions: 

• The second-mode excitation on a wavy wall (distributed roughness) is not singular at 

the branch point. The receptivity function peak is totally due to a singular behavior of 

the normal wave itself. If one measures the disturbance amplitude Q at a fixed point 

downstream from the branch point xw for various loci of the resonance point x10 , 

then he will not observe essential changes in the distribution Q(xl0) near the point 

*10 ~ Xlb 

The second-mode excitation over a hump (local roughness) strongly depends on a 

distance between the hump locus x]0 and the branch point. As x10 -» xlb, the normal- 

wave amplitude increases proportionally to |x10 -x]6|"
!/4and attains its maximum value 

of the order of sahs~U6 at x10 = xib. If one measures the disturbance amplitude O at 

a fixed point downstream from the branch point for various loci of the forcing element, 

then he will observe a local peak in the distribution Q(xl0) at the point x]0 = xlb. 
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The analytical results were build in a computational module, which was coupled with our 

stability solver. Detailed calculations were performed for two-dimensional disturbances 

interacting with the flat-plate boundary layer at the Mach number M-6, wall 

temperature T *= 80° F and stagnation temperature T* = 390° F. This case is considered 

as a good candidate for receptivity experiments in the Mach 6 quiet wind tunnel. The 

spectrum calculations showed that the branch points are essentially complex. That 

motivated us to perform receptivity calculations under the assumption that the spectrum is 

simple. Numerical studies lead us to the following conclusions: 

1. In the boundary layer, the pressure amplitude of fast acoustic waves is larger than that 

of slow waves with the same frequency and incidence angle. The amplitude maximum 

is observed at the incidence angle 0 « 40° for slow waves and 0 « 45° for fast waves. 

Due to counter-phase interference between the incident and reflected waves, the 

disturbance amplitude decreases rapidly as the incidence angle tends to zero. This 

trend is opposite to the subsonic case when the incident and reflected waves are in 

phase. 

2. For receptivity on wavy-wall, the receptivity function is highly non-uniform with 

respect to the Reynolds number. 

• In the case of slow acoustic waves, it has two maximums: the first is close to the 

lower neutral branch and the second to the upper neutral branch. These maximums 

correlate with the spectrum branch points. The boundary layer is the most 

receptive to acoustic waves of relatively high incidence angles: 0 « 65° near the 

first maximum and 0 « 40° near the second maximum. 

• In the case of fast acoustic waves, the receptivity maximums merge into one 

relatively flat maximum covering the instability region. The boundary layer is most 

receptive to acoustic waves of the incidence angle 0 « 45°. 
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•   Receptivity to both slow and fast acoustic waves of small incidence angles is on 

the order of magnitude lower than its maximum level. 

3. For receptivity on local hump, the receptivity function has the same qualitative 

behavior as in the wavy-wall case. However its quantity is essentially smaller: 

This study does not cover all aspects of the hypersonic boundary-layer receptivity to 

sound scattered by roughness. The following issues will need to be addressed in future 

effort: 

• For the boundary layers on cooled surfaces, the spectrum branch points may be very 

close to the real parameter space. Careful studies of the receptivity mechanism in the 

branch point vicinity should be performed. 

• Calculations have been conducted for two-dimensional cases only. Since in the 

majority of practical cases (including wind-tunnel experiments), acoustic sources and 

roughness elements are three-dimensional, analysis of 3-D receptivity will be useful. 

• Receptivity to acoustic disturbances concentrated near the line of intersection between 

the Mach cone and body surface may play important role in the instability excitation. 

This problem seems to be relevant to the boundary-layer interaction with oscillating 

shocklets. 

• Parametric studies of hypersonic receptivity to entropy and vorticity disturbances 

scattered by surface irregularities are also required. 

• It is feasible to compare the results of this study with our previous results relevant to 

the leading-edge receptivity [1], vorticity/entropy swallowing [2], and receptivity to 

wall-induced perturbations. This will help to identify the most probable scenarios of 

the initial transition phase for typical practical cases. 
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Fig. 2 Flow scheme for resonant excitation. 
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Fig. 23 Contours of pressure amplitude \pa(y,Q)\ = const for fast waves; /? = 1000, 

F = 8.xl<r5. 
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Fig. 24 Distributions |pa(y,0)| at various incidence angles for fast waves, i? = 1000, 

F = 8.xl0-5. 
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Fig. 25 Contours of mass-flux amplitude \fa(y,&)\ = const for fast waves; R = 1000, 

F = 8.xl0~5. 
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Fig. 26 Mass-flux amplitude distributions |/a(y,G)| at various incidence angles for fast 

waves; R = 1000, F = 8. x 10~5. 
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Fig. 27 Contours max\fa(y,R, F)\ = const for fast waves at 0 = 45° 
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Fig. 28a Distributed receptivity function for slow acoustic waves; F = 4. x 10 
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Fig. 28b Contours G dis(Q,R) = const for slow acoustic waves; F = 4. x 10 
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Fig. 29a Distributed receptivity function for slow acoustic waves; F = 6. x 10 
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Fig. 29b Contours G dis(Q, R) = const for slow acoustic waves; F = 6. x 10 
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Fig. 30a Distributed receptivity function for slow acoustic waves; F = 8. x 10 
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Fig. 30b Contours Gpdis(Q, R) = const for slow acoustic waves; F = 8. x 10" 
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Fig. 31a Distributed receptivity function for slow acoustic waves; F = 10 
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Fig. 31b Contours G dis(9,R) = const for slow acoustic waves; F = 10 i-4 
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Fig. 32a Distributed receptivity function for fast acoustic waves; F = 4. x 10" 
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Fig. 32b Contours G dis(Q,R) = const for fast acoustic waves; F = 4.xl0" 
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Fig. 33a Distributed receptivity function for fast acoustic waves; F = 6. x 10 5 

R 

3000 H 

2500- 

2000 

1500 

1000 

500 

IH 2.250 - 2.750 
^■1.841   - 2.250 
AS 1-507 - 1.841 
Bägl 1.233 - 1.507 
JE31.009 -- 1.233 
IP"! 0.8253 - - 1.009 
f;    ! 0.6753 - - 0.8253 

0.5526 - - 0.6753 
mn o.452i - - 0.5526 
mm 0-3699 - - 0.4521 
^ai 0.3027 - - 0.3699 
^■0.2477 - - 0.3027 
^■0.2027 - - 0.2477 
^■0.1658 - - 0.2027 
^■0.1357 - - 0.1658 
^■0.1110 - - 0.1357 
^■0.0908 - - 0.1110 
^■0.0743 - - 0.0908 
^B 0.0608 - - 0.0743 
^■0.0498 - - 0.0608 
^■0.0407 - - 0.0498 
^■0.0333 - - 0.0407 
^■0.02726 - 0.0333 
^■0.02231 - 0.02726 
^■0.01825 - 0.02231 
^■0.01494 - 0.01825 
■ 0.01222 - 0.01494 
■ 0.01000 - 0.01222 

Fig. 33b Contours G dis(€>,R) = const for fast acoustic waves; F = 6. x 10" 
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Fig. 34a Distributed receptivity function for fast acoustic waves; F = 8. x 10 
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Fig. 34b Contours G dis(®, R) = const for fast acoustic waves; F = 8. x 10" 
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Fig. 35a Distributed receptivity function for fast acoustic waves; F = 10 -4 
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Fig. 35b Contours G dis(Q,R) = const for fast acoustic waves; F = 1(T* 
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Fig. 36a Local receptivity function for slow acoustic waves; F = 4. x 10 
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Fig. 36b Contours Gp loc (0, R) = const for slow acoustic waves; F = 4. x 10" 
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Fig. 37a Local receptivity function for slow acoustic waves; F = 6. x 10 5 
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Fig. 37b Contours G loc (0, R) = const for slow acoustic waves; F = 6. x 10" 
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Fig. 38a Local receptivity function for slow acoustic waves; F = 8. x 10 -5 
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Fig. 38b Contours Gp loc (0, R) = const for slow acoustic waves; F = 8. x 10" 
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Fig. 39a Local receptivity function for slow acoustic waves; F = 10 4. 
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Fig. 39b Contours G loc (0, R) = const for slow acoustic waves; F = 10 
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Fig. 40a Local receptivity function for fast acoustic waves; F = 4. x 10 
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Fig. 40b Contours G Zoc(0, R) = const for fast acoustic waves; F = 4. x 10" 
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Fig. 41a Local receptivity function for fast acoustic waves; F - 6. x 10   . 
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Fig. 41b Contours Gploc (©, R) = const for fast acoustic waves; F = 6. x 10" 
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Fig. 42a Local receptivity function Gpl0C{Q,R) for fast acoustic waves; F = 8.xl(T 
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Fig. 42b Contours G loc (0, R) = const for fast acoustic waves; F = 8. x 10" 
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Fig. 43a Local receptivity function for fast acoustic waves; F = 10 
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Fig. 43b Contours Gpl0C(@,R) = const for fast acoustic waves; F = 10"4 
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Appendix 
Non-zero elements of Matrix H0 = (aß), j = 1,...,8, / = 1....8 in Eq. (2.9): 

an = a56 = a78 = 1 

an=a2+ß2+R— 21 H        pT 

<2„ =- 

D7    .   Dp 
a„ = -/a(m +1) ia —— + i? 

J" Mr 
ia 

a0. =R (m + l)y/kf ~aQ 
P 

Q    D(p'DU) 
a,5 =a(m + l)  

P 

fl26=- 
__P^£U_ 

a3l = -ia 

DT 
fl33 = 

aM = -iyM2Q. 

a35=ly 

a37 = -iß 
( 

a« = -#«  + 2—t- 
T p 

a42 = -i%a 
f 

a44=-ixryM2 

iQ -a2-B2-R—+r H        pT        T 

CcDU + ßDW + Q 

D2T       DpDT 
■ + r 

ßT    ) 

a45 = iX 
'\ 

a46=lXr— 

(aDU + ßDwij + ^ 

Q 

D^+Dp 
T       »  ) 

QDp 
+ r 

pT 

«47 = -iXß 

«48 = -iXß 

T      v- ) 
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a62=-2(y-l)M2PrDU 
DT 

a63 = -2/(7 - \)M2 ?r(ocDU + ßDW) + PrR  

a„=-i(7-lW2PrÄ- 

a.-a' + r + iKRZ-HTW^0"*«™*-^ 
Dfi 

«66 =-2 
P 

a6g=-2(y-l)M2?iDW 

.0,      „DT    .aDß    BDW 
a83=-iß(m + l)—-iß-^ + R— 

iß au = R—-(m + l)yM 
P 

a,      „ Q    D(ß'DW) 
85 T n 

u'DW 
a™ - -   

P 

a&7=a- + ß-+R— 

P 

Here 

ti'=^,DF=^,n = au + ßw-co,x=1i— ; 
dT       dy -+irlM

2Q 
p 

r = |(* + 2),#n = |(*-l), 

where k = 0 corresponds to Stokes hypothesis; 
U(xvy) and Wix^y) is x and z-component of the laminar mean flow on a swept wing; 

r(x,, y) is mean-flow temperature; 
/z = p(T) is nondimensional dynamic viscosity, Dfi = \i'DT. 
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Non-zero elements of the nonlinear interaction matrix 

G(y,xl,q;aw,ßw,aa,ßa,0)) = (gß), ; = 1,...,8, / = 1,...,8, inEq. (2.8a): 

iR 
g2l = — [(aa + a Jq, + ßaq7 + TQaP] 

fj.1 

R 

g2i=^(q2+TDUp) 

g»=TM2 -ZzUiaJJ + ßwW)qx + DUq,) 
[XI 

825 =■ 
R      r- 

ßr- [i(awU + ßwW)q1+DUq3] 

R 

g3l=-iawTp 

u. 
833 ~' 

DT ^ 
iyM2Qawq3- — q5 + q6 

834 =iyM2{-aaql -ßaqn +TQawp) 
1 , -a     ^     n DT 

835 = ^ (GWi +Pa<li)-&mP—fr<l2 

_j_ 
#36   ~  rpl3 

831 - -ißJP 
.aa-aw 

8u=l      " <?3 

£43 =-^{i(a. -ajft +2^?3+/(A -j8J?7 +iT[(a. -ccw)U + (ßa -ßw)W-co]p} 

844 ~ 
iyM: 

■[(aa-aw)U + (ßa-ßw)W-co]q, 

845 =-p-[(«. -aJ^ + (A - A.)W-<»ta3 

847=j(ßa-ßJ<l3 

R 
8 ei = iocw Pr—[<?5 - (7 - 1)M 27?4 ] 
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g63 = Pr^-[q6 + TDTp + i{Y-\)M2aawq,} 

g(A = ?r^j-\y[i(awU + ßwW)q5 + DTqi\-i(y-\)T(aaqx + j3a<?7)} 

g65 = Pr -y {ia.«i + ißati + 'TO.P - £[i(awtf + /W*s + DT^]} 

D      R 

ßT 
R 

g6l=ißwPr-^[q5-(y-l)M2Tq4] 

R 
ßT^1 

R 

gu=yM2 -2-lHaJU + ßwW)qi + DWq3] 

g85 = —^riKaJJ + ßwW)q7 + DWq,] 

iR 
*« =J^[CCaq1+(ßa+ ßw)q7+map] 

R 
8u~ HTq* 

Here q = Fw(y) is vector-function of the wall-induced disturbance, 

aa=ccaU + ßaW-o),Qaw=(aa+aw)U + (ßa+ßw)W-o), 

P=j TM q4~jq5 
is density of the wall-induced disturbance. 
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